Large-Scale Transmission Planning Under Uncertainty: Generation Co-optimization & Economic Analysis

BPA, March 20, 2013

Benjamin F. Hobbs

Schad Professor of Environmental Management
Director, Environment, Energy, Sustainability & Health Institute (E²SHI)
The Johns Hopkins University

Chair, Market Surveillance Committee, California ISO

Francisco Munoz, Saamrat Kasina, Jonathan Ho

Thanks to CERTS-USDOE, NSF, and UK EPSRC for funding (Sources: van der Weijde, Hobbs, Energy Economics, 2012; Munoz & Hobbs, IEEE PES Meeting, 2012, 2013)

I. Challenge of Hyperuncertainty: What's a Transmission Planner to do?

Dramatic changes coming!

- Renewables
 - How much?
 - Where?
 - What type?
- Other generation
 - Centralized?
 - Distributed?
- Demand
 - New uses? (EVs)
 - Controllability?
- Policy

The problem

Planning

- Decisions can be postponed: multi-stage
- Uncertainties & variability: stochastic
- Bilevel: response of generators & consumers to grid decisions

Important questions:

- Optimal strategy under uncertainty?
- Value of information & flexibility?
- Penalty for ignoring uncertainty?
- How gen investment responds to grid design?

Deterministic planning can't answer

- Stochastic multilevel can!
- Considers all scenarios simultaneously

JHU E²SHI

Our Approach: Two-Stage Transmission Mixed Integer LP Under Uncertainty

Cf. NXT/NETPLAN (used by WECC): accounts for variability, not uncertainty $JHU~E^2SHI$

II. UK: Best near-term grid investments in face of 6 econ/policy scenarios

Onshore wind

Offshore CCGT wind

Nuclear

OCGT

Biomass

Uncertainty Means Optimal to Delay 3 Lines Recommended by National Grid

III. WECC 240-bus Test Case: MILP with ~10⁶ -10⁷ Variables

WECC 240-bus system:

(Price & Goodin, 2011)

140 Generators

448 Transmission elements

Candidate Transmission Alternatives

Renewables data (Time series, GIS) (NREL, WREZ, RETI)

54 Wind profiles 29 Solar profiles

Renewables data (Time series, GIS)

NIDEL MIDEZ DETIL

Scenarios: WECC

Focus on environmental policy & fuel prices:

Differentiated State RPS

- State RPS
- >75% from in-state resources
- Average fossil fuel prices

33% WECCwide RPS

- 33% WECC-wide RPS
- Efficient REC markets
- High fossil fuel prices

Carbon Cap & Trade

- 17% below 2005 levels by 2020
- 45% below 2005 levels by 2030
- Low fossil fuel prices

Experiments:

- Scenario Planning (Deterministic)
- Stochastic Approach (All scenarios at once)
- Heuristics:
 - 1. Heuristic I: Build lines needed in all 3 scenarios
 - 2. Heuristic II: Build lines needed in "most" scenarios (>2)
 - 3. Heuristic III: Build all lines built in any scenario

"Least-regrets" or "Multi-Value Projects" "Congestion-free"

JHU E²SHI

Results: WECC

First-Stage Transmission Investments: Backbones

Approach		B19	B37	7 B56	B68	B72	B73	B74	B92	B95	B125	B133	B136	B137	B143	B151	B157	B168	B169	B201	B202	B218	B222	B237	B238
D- Carbon					1					1	1	1		1	2								2	1	2
D-33% WECC			1			1	1	2		1								1	1	1		1	1	2	
D-State RI	PS	2	1	1					2		2		1								1		1		2
	Flexible plans are																								

suboptimal in retrospect!

Approach	First-Stage Transmission Investments [\$Bill]	Expected PW of G&T Costs [\$ Bill]					
D- Carbon Sce.	4.1	728.2					
D-33% WECC S	15.4	653.6					
D-State RPS Sce.	11.3	667.0					
Heuristic I	0.4	951.4					
Heuristic II	6.3	679.1					
Heuristic III	24.2	644.5					
Stochastic (All Scenarios)	14.8	636.2					

Penalty for ignoring uncertainty:

= 46.7 \$Bill.

JHU E²SHI